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Exponential stability and periodic solutions of neural networks
with continuously distributed delays
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In this paper we study a class of neural networks with continuously distributed delays. By means the of
Lyapunov functional method, we obtain some sufficient conditions ensuring the existence, uniqueness, and
global exponential stability of the equilibrium and periodic solution. We also estimate the exponentially
convergent rate. Our results are less restrictive than previously known criteria and can be applied to neural
networks with a broad range of activation functions assuming neither differentiability nor strict monotonicity.
Moreover, these conclusions are presented in terms of system parameters and can be easily verified. Therefore,
our results play an important role in the design of globally exponentially stable neural circuits and periodic
oscillatory neural circuits.
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I. INTRODUCTION

It is well known that for neural networks with delays, it
rather difficult to analyze their stability properties due
introduction of delays. There are usually two ways to do th
One is to linearize the system near equilibrium~the original
system has the same stability properties as the linearized
tem near equilibrium!; conditions obtained in this way con
cern the local stability around an equilibrium. Another way
to construct a suitable Lyapunov function for the system a
then to derive sufficient conditions ensuring stability, th
usually involves global stability. Of course, constructing
suitable Lyapunov function is usually not an easy task. M
cus and Westervelt@1# studied the stability of analog neura
networks with delay by linearizing the systems. By using
Lyapunov functional approach, Gopalsamy and He@2# and
Lu @3# established some sufficient conditions for the del
independent stability; Cao and co-worker@4,5# researched
the global exponential stability. In addition, in the applic
tions of neural networks, it is required that the converg
rate should be improved in order to reduce the span
neurons need to calculate.

Although the use of constant discrete delays in mod
with delayed feedbacks provides a good approximation
simple circuits consisting of a small number of neurons, n
ral networks usually have a spatial extent due to the prese
of a multitude of parallel pathways with a variety of axo
sizes and lengths. Thus, there will be a distribution of pro
gation delays. In this case, the signal propagation is
longer instantaneous and cannot be modeled with disc
time delay. A more appropriate way is to incorporate distr
uted delays. Tank and Hopfield@6# have proposed a neura
circuit with distributed delays, which solves a general pro
lem of recognizing patterns in a time-dependent signal.
the applications of neural networks with distributed delays
described delays as described in Ref.@6#, the readers may
also refer to Refs.@7,8#. Moreover, a neural network mode
with distributed delay is more general than that with discr
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delay. This is because the distributed delay becomes a
crete delay when the delay kernel is ad function at a certain
time.

In this paper, we investigate a class of neural netwo
with continuously distributed delays modeled by the follo
ing system of delayed differential equations:

xi8~ t !52m ixi~ t !1(
j 51

n Fai j f j~xj~ t !!1bi j

3gj S E
0

`

kj~s!xj~ t2s!dsD G1I i~ t !,t>t0 ,

i 51,2, . . . ,n, ~1!

wheren corresponds to the number of neurons in the neu
network,xi(t) andI i(t) represent the activation and extern
inputs of thei th neuron, respectively,ai j and bi j represent
the strengths of synaptical connections and are consta
m i.0 represents the rate with which thei th neuron will reset
its potential to the resting state in isolation when disco
nected from the network and external inputs,kj denotes the
refractoriness of thej th neuron after it has fired or re
sponded,f j ,gj ( j 51,2, . . . ,n) are signal transmission func
tions of thej th neuron.

In the following we assume thatkj ,I i :@ t0 ,`)→R are
continuous,kj is integrable and satisfies

E
0

`

kj~s!ds5cj.0, E
0

`

skj~s!ds,`, j 51,2, . . . ,n,

the signal transmission functionsf j ,gj ( j 51,2, . . . ,n) pos-
sess the following properties:

~H1! f j ,gj ( j 51,2,•••,n) are bounded onR;
~H2! there existspj.0 and qj.0 such that u f j (u)

2 f j (v)u<pi uu2vu and ugi(x)2gi(y)u<qi ux2yu for any
u,vPR and j 51,2, . . . ,n.

The initial conditions associated with system~1! are of
the form

xi~s!5w i~s!, sP~2`,0#, ~2!

wherew i :(2`,0#→R is usually assumed to be continuou
©2003 The American Physical Society02-1



ns
ic

ns

ilib
s
m
t

ns

d

o

q.

S. GUO AND L. HUANG PHYSICAL REVIEW E67, 011902 ~2003!
Our results impose milder constraints on system~1! and
apply to neural networks with a broad range of signal tra
mission functions assuming neither differentiability nor str
monotonicity.

II. STABILITY ANALYSIS

Consider the special case of model~1! as I i(t)[I i , i.e.,

xi8~ t !52m ixi~ t !1(
j 51

n Fai j f j~xj~ t !!1bi j

3gj S E
0

`

kj~s!xj~ t2s!dsD G1I i , ~3!

wheret>t0 , i 51,2, . . . ,n, andI i is constant.
Lemma 1.Assume that the signal transmission functio

f j ,gj ( j 51,2, . . . ,n) satisfy ~H1! and ~H2!. Then there ex-
ists an equilibrium for model~3!.

Proof. Clearly, x* 5(x1* ,x2* , . . . ,xn* )T is an equilibrium
of Eq. ~3! if and only if x* satisfies that

m ixi* 5(
j 51

n Fai j f j~xj* !1bi j gj S E
0

`

kj~s!xj* dsD G1I i

5(
j 51

n

@ai j f j~xj* !1bi j gj~cjxj* !#1I i .

Construct a mapping to be

F~u1 ,u2 , . . . ,un!5„F1~u1!,F2~u2!, . . . ,Fn~un!…T,

where Fi(ui)5m i
21

„( j 51
n @ai j f j (uj )1bi j gj (cjuj )#1I i…,i

51,2, . . . ,n. Then it is easy to see thatx* is the equilibrium
of system~3! if and only if x* is the fixed point ofF(u).
Consider the following closed convex set:

V5H xPRn;uxi2m i
21I i u<m i

21(
j 51

n

@ai j f j
11bi j gj

1#,

i 51,2, . . . ,nJ ,

where f j
1
ªsupsPR$u f j (s)u% and gj

1
ªsupsPR$ugj (s)u%. It is

easy to verify thatF is continuous and satisfies thatF(u)
PV for all uPV. Hence by the Brouwer’s theorem,F has at
least one fixed pointx* . This completes the proof.

The above lemma indicates the existence of the equ
rium x* of system~3!, but is not sufficient to guarantee it
uniqueness. Our purpose in this section is to obtain so
sufficient conditions ensuring the uniqueness and even
global exponential stability of equilibriumx* . It is an easy
exercise to verify the following lemma.

Lemma 2.ayxa21<ya1(a21)xa for all a.1,x,y>0.
Thus, we state one of main results as follows:
Theorem 1.Assume that the signal transmission functio

f j ,gj ( j 51,2, . . . ,n) satisfy ~H1! and ~H2!. If there exist
positive constantsd1 ,d2 , . . . ,dn anda.1 such that one of
01190
-
t

-
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the following conditions~A1!–~A6! holds, then the equilib-
rium x* of system~3! is globally exponentially stable an
hence unique.

~A1 ! max
1< i<n

H 1

am i
(
j 51

n F ~a21!~ uai j upj1ubi j uqjcj !

1
1

di
~ uaji udj pi1ubji udjqici !G J ,1;

~A2 ! max
1< i<n

H 1

am i
(
j 51

n F ~a21!~ uai j upj1cj !

1
1

di
~ uaji udj pi1ubji uadjqi

aci !G J ,1;

~A3 ! max
1< i<n

H 1

am i
(
j 51

n F ~a21!~ uai j upj1ubi j ucj !

1
1

di
~ uaji udj pi1ubji udjqi

aci !G J ,1;

~A4 ! max
1< i<n

H 1

am i
(
j 51

n F ~a21!~ uai j upj1qjcj !

1
1

di
~ uaji udj pi1ubji uadjqici !G J ,1;

~A5 ! max
1< i<n

H 1

am i
(
j 51

n F ~a21!~ uai j upj1ubi j uqj
a/(a21)cj !

1
1

di
~ uaji udj pi1ubji udjci !G J ,1;

~A6 ! max
1< i<n

H 1

am i
(
j 51

n F ~a21!~ uai j upj1qj
a/(a21)cj !

1
1

di
~ uaji udj pi1ubji uadjci !G J ,1.

Proof. Sincex* is an equilibrium of system~3!, then the
deviationsyi(t)5xi(t)2x* , i 51,2, . . . ,n satisfy

yi8~ t !52m i yi~ t !1(
j 51

n

ai j @ f j~xj* 1yj~ t !!2 f j~xj* !#

1(
j 51

n

bi j Fgj S E
0

`

kj~s!~xj* 1yj~ t2s!!dsD
2gj~cjxj* !G1I i . ~4!

Obviously, system~4! has an equilibrium 0. Hence, t
prove the global exponential stability of model~3!, it is
equivalent to prove the global exponential stability of E
2-2
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~4!. In what follows, we distinguish three cases to prove t
each of the conditions~A1!–~A6! ensures the global expo
nential stability of Eq.~4!.

Case 1.Assume that condition~A1! holds. Then there
exists a positive constantl,m i such that

m i2l.~a21!a21(
j 51

n F uai j upj1ubi j uqjE
0

`

kj~s!elsdsG
1~adi !

21(
j 51

n F uaji udj pi1ubji udjqiE
0

`

ki~s!elsdsG .

For all i 51,2, . . . ,n, substitutingzi(t)5yi(t)e
lt if t>0 and

zi(t)5yi(t) otherwise into Eq.~4!, we have
01190
t
zi8~ t !5~l2m i !zi~ t !1elt(

j 51

n

ai j @ f j„xj* 1zj~ t !e2lt
…

2 f j~xj* !#1elt(
j 51

n

bi j Fgj S E
0

`

kj~s!@xj*

1zj~ t2s!el(s2t)#dsD 2gj~cjxj* !G1I i . ~5!

We consider a Lyapunov functionalV1(t)5V1(z)(t) defined
by

V1~ t !5a21(
i 51

n

diF uzi~ t !ua1(
j 51

n

ubi j uqj

3E
0

`E
t2s

t

ki~s!elsuzj~j!uadjdsG .

Calculating the upper right derivativeD1V1 of V1 along the
solutions of system~5!, we have
D1V1~ t !5(
i 51

n

di uzi~ t !ua21D1uzi~ t !u1a21(
i 51

n

di (
j 51

n

ubi j uqjE
0

`

ki~s!els@ uzj~ t !ua2uzj~ t2s!ua#ds

<(
i 51

n

diF ~l2m i !uzi~ t !ua1(
j 51

n

uai j upj uzi~ t !ua21uzj~ t !u1(
j 51

n

ubi j uqj uzi~ t !ua21E
0

`

ki~s!uzj~ t2s!u

3elsds1a21(
j 51

n

ubi j uqjE
0

`

ki~s!els@ uzj~ t !ua2uzj~ t2s!ua#dsG
<(

i 51

n

diF ~l2m i !uzi~ t !ua1a21(
j 51

n

uai j upj@~a21!uzi~ t !ua1uzj~ t !ua#1a21(
j 51

n

ubi j uqj

3E
0

`

ki~s!@~a21!uzi~ t !ua1uzj~ t2s!ua#elsds1a21(
j 51

n

ubi j uqjE
0

`

ki~s!els@ uzj~ t !ua2uzj~ t2s!ua#dsG
<(

i 51

n

di H l2m i1a21~a21!(
j 51

n F uai j upj1ubi j uqjE
0

`

kj~s!elsdsG1~adi !
21(

j 51

n F uaji upidj1ubji uqidj

3E
0

`

ki~s!elsdsG J uzi~ t !ua<0.

That is, we have

V1~ t !<V1~0!.

Therefore, we obtain

(
i 51

n

di uzi~ t !ua<(
i 51

n

diF uzi~0!ua1(
j 51

n

ubi j uqjE
0

`E
2s

0

ki~s!elsuzj~j!uadjdsG
<(

i 51

n

diF11(
j 51

n

ubi j uqjE
0

`

ki~s!selsdsGsup
j<0

$uzi~j!ua%.

Thus,
2-3
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uyi~ t !u<H di
21(

i 51

n

diF11(
j 51

n

ubi j uqjE
0

`

ki~s!selsdsG J 1/a

sup
j<0

$uw i~j!2x* u%e2lt
x-

e

x-

e

for all t>0 andi 51,2, . . . ,n. This implies that the equilib-
rium x* is globally exponentially stable. Moreover, the e
ponential convergent rate isl.

Case 2. Assume that condition~A2! holds. Then there
exists a positive constantl,m i such that

m i2l.~a21!a21(
j 51

n S uai j upj1E
0

`

kj~s!elsdsD
1~adi !

21(
j 51

n F uaji udj pi1ubji uadjqi
a/(a21)

3E
0

`

ki~s!elsdsG .
Consider the transformed system~5! and a Lyapunov func-
tional V2(t)5V2(z)(t) defined by

V2~ t !5a21(
i 51

n

diF uzi~ t !ua1(
j 51

n

ubi j uaqj
a

3E
0

`E
t2s

t

ki~s!elsuzj~j!uadjdsG .

We calculate the upper right derivativeD1V2 of V2 along
the solutions of system~5!. Using arguments similar to cas
1, we have

uyi~ t !u<H di
21(

i 51

n

diF11(
j 51

n

ubi j uaqj
a

3E
0

`

ki~s!selsdsG J 1/a

sup
j<0

$uw i~j!2x* u%e2lt

for all t>0 andi 51,2, . . . ,n. This implies that the equilib-
rium x* is globally exponentially stable. Moreover, the e
ponential convergent rate isl.

Case 3. Assume that one of conditions~A3!–~A6! holds.
Consider the associated Lyapunov functions defined by

V3~ t !5a21(
i 51

n

diF uzi~ t !ua1(
j 51

n

ubi j uqj
a

3E
0

`E
t2s

t

ki~s!elsuzj~j!uadjdsG ,
01190
V4~ t !5a21(
i 51

n

diF uzi~ t !ua1(
j 51

n

ubi j uaqj

3E
0

`E
t2s

t

ki~s!elsuzj~j!uadjdsG ,

V5~ t !5a21(
i 51

n

diF uzi~ t !ua1(
j 51

n

ubi j u

3E
0

`E
t2s

t

ki~s!elsuzj~j!uadjdsG ,

V6~ t !5a21(
i 51

n

diF uzi~ t !ua1(
j 51

n

ubi j ua

3E
0

`E
t2s

t

ki~s!elsuzj~j!uadjdsG .

Using arguments similar to case 1, we, respectively, hav

uyi~ t !u<H di
21(

i 51

n

diF11(
j 51

n

ubi j uqj
aE

0

`

ki~s!selsdsG J 1/a

3sup
j<0

$uw i~j!2x* u%e2lt,

uyi~ t !u<H di
21(

i 51

n

diF11(
j 51

n

ubi j uaqjE
0

`

ki~s!selsdsG J 1/a

3sup
j<0

$uw i~j!2x* u%e2lt,

uyi~ t !u<H di
21(

i 51

n

diF11(
j 51

n

ubi j u E
0

`

ki~s!selsdsG J 1/a

3sup
j<0

$uw i~j!2x* u%e2lt,

uyi~ t !u<H di
21(

i 51

n

diF11(
j 51

n

ubi j uaE
0

`

ki~s!selsdsG J 1/a

3sup
j<0

$uw i~j!2x* u%e2lt

for all t>0 andi 51,2, . . . ,n. This implies that the equilib-
rium x* is globally exponentially stable.
2-4
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Corollary 1. Assume that~H1! and ~H2! hold. If there
exist positive constantsd1 ,d2 , . . . ,dn such that one of the
following conditions~i!–~viii ! holds, then system~3! is glo-
bally exponentially stable:

~ i! 2m i.(
j 51

n

~ uai j upj1ubi j uqjcj1di
21uaji udj pi

1di
21ubji udjqici ! for all i 51,2, . . . ,n;

~ ii ! m i.di
21(

j 51

n

~ uaji udj pi1ubji udjqici !

for all i 51,2, . . . ,n;

~ iii ! m i.(
j 51

n

~ uai j upj1ubi j uqjcj ! for all i 51,2, . . . ,n;

~ iv! 2m i.(
j 51

n

~ uai j upj1cj1di
21uaji udj pi

1di
21ubji u2djqi

2ci ! for all i 51,2, . . . ,n;

~v! 2m i.(
j 51

n

~ uai j upj1ubi j ucj1di
21uaji udj pi

1di
21ubji udjqi

2ci ! for all i 51,2, . . . ,n;

~vi! 2m i.(
j 51

n

~ uai j upj1qjcj1di
21uaji udj pi

1di
21ubji u2djqici ! for all i 51,2, . . . ,n;

~vii ! 2m i.(
j 51

n

~ uai j upj1ubi j uqj
2cj1di

21uaji udj pi

1di
21ubji udjci ! for all i 51,2, . . . ,n;

~viii ! 2m i.(
j 51

n

~ uai j upj1qj
2cj1di

21uaji udj pi

1di
21ubji u2djci ! for all i 51,2, . . . ,n.

Proof. First, condition ~i! is a special case of~A1! as a
52. Next, if condition~ii ! or ~iii ! holds, then there exists
numbera.1 such that~A1! holds. Finally, the remaining
conditions can be verified similarly.

III. EXISTENCE OF PERIODIC SOLUTIONS

In this section we investigate the periodic solutions of
model of the form

xi8~ t !52m ixi~ t !1(
j 51

n Fai j f j„xj~ t !…1bi j

3gj S E
0

`

kj~s!xj~ t2s!dsD G1I i~ t !, ~6!
01190
e

wheret>t0 , i 51,2, . . . ,n and I i :R1→R is a continuously
periodic function with periodv, i.e., I i(t1v)5I i(t).

Theorem 2.Assume that~H1! and~H2! hold. If there exist
positive constantsd1 ,d2 , . . . ,dn anda.1 such that one of
conditions ~A1!–~A6! holds, then there exists exactly on
v-periodic solution of system~6! and all other solutions of
~6! converge exponentially to it ast→`.

Proof. Let C5C„(2`,0#,Rn
… be the Banach space o

continuous functions that map (2`,0# into Rn with the to-
pology of uniform convergence. For anywPC, we define
iwi5supt<0uw(u)u, whereuw(u)u5max1<i<nuwi(u)u.

For anyw,cPC, we denote the solutions of Eq.~6! with
the initial values (0,w) and (0,c) as

x~ t,w!5„x1~ t,w!,x2~ t,w!, . . . ,xn~ t,w!…T,

x~ t,c!5„x1~ t,c!,x2~ t,c!,•••,xn~ t,c!…T,

respectively. For a givensP@0,̀ ) and a continuous function
x:@2`,`)→Rn, we define xs :@2`,0#→Rn by xs(u)
5x(s1u) for uP@2`,0#.

Thus, it follows from Eq.~6! that

@xi~ t,w!2xi~ t,c!#852m i@xi~ t,w!2xi~ t,c!#

1(
j 51

n

ai j @ f j„xj~ t,w!…2 f j„xj~ t,c!…#

1(
j 51

n

bi j Fgj S E
0

`

kj~s!xj~ t2s,w!dsD
2gj S E

0

`

kj~s!xj~ t2s,w!dsD G
for all t>t0 , i 51,2, . . . ,n.

Define

yi~ t !5xi~ t,w!2xi~ t,c!, i 51,2, . . . ,n.

One can derive that

yi8~ t !52m i yi~ t !1(
j 51

n Fai j f j8„u j~ t !…yi~ t !

1bi j gj8„d j~ t !…E
0

`

kj~s!yj~ t2s!dsG ~7!

for all t>t0 , i 51,2, . . . ,n, where u j (t) lies between
xj (t,w) and xj (t,c), d j (t) lies between *0

`kj (s)xj (t
2s,w)ds and *0

`kj (s)xj (t2s,c)ds. Using similar argu-
ments as that in the proof of Theorem 1, we can deduce
0 is the global exponential stable equilibrium of system~7!,
i.e.,

uyi~ t !u<Ke2ltiw2ci , i 51,2, . . . ,n,

whereK.1 is a constant andl.0 is determined by condi-
tion ~H3!. Therefore,

uxi~ t,w!2xi~ t,c!u<Ke2ltiw2ci , i 51,2, . . . ,n.
2-5
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Finally, the rest of the proof is similar to that of Theore
4 in Ref. @9# and is hence omitted here.

Corollary 2. Under the assumptions of Corollary 1, the
exists exactly onev-periodic solution of system~6! and all
other solutions of Eq.~6! converge exponentially to it ast
→`.

IV. EXAMPLES

Example 1.Consider the following neural networks:

x18~ t !520.6x1~ t !10.1f „x1~ t !…10.1f „x2~ t !…

10.1f S E
0

`

e2sx1~ t2s!dsD
10.2f S E

0

`

e2sx2~ t2s!dsD 21.1, ~8!

x28~ t !520.7x2~ t !10.1f „x1~ t !…10.1f „x2~ t !…

10.2f S E
0

`

e2sx1~ t2s!dsD
10.2f S E

0

`

e2sx2~ t2s!dsD 21.4,

where the signal transmission function is described b
piecewise-linear functionf (x)5 1

2 (ux11u2ux21u), the con-
tinuous delay kernelkj (s)5e2s. It is easy to see thatf
clearly satisfies the hypotheses~H1! and ~H2! above, pi

5qi51(i 51,2), and kj (s) satisfies that*0
`e2sds51.0

and *0
`se2sds51,`. Hence, the condition~A1! in Theo-

rem 1 can be reduced to

~0.1a10.3!d1.0.4d2 , 0.4d2.0.3d1 .

In fact, we can takea52,d15d251. Thus by Theorem 1
the equilibrium of model~8! is globally exponentially stable
It is easy to verify that~1,1! is an equilibrium of the model
and the exponential convergent rate is greater than 0.03

Example 2.Consider the following neural networks wit
delays.

x18~ t !52x1~ t !10.1f „x1~ t !…10.2f „x2~ t !…

10.2f S E
0

`

e2sx1~ t2s!dsD
10.4f S E

0

`

e2sx2~ t2s!dsD 1I 1~ t !, ~9!
01190
a

.

x28~ t !52x2~ t !10.2f „x1~ t !…10.1f „x2~ t !…

10.3f S E
0

`

e2sx1~ t2s!dsD
10.2f S E

0

`

e2sx2~ t2s!dsD 1I 2~ t !,

where f (x)5tanh(x),

I 1~ t !5cost1sint20.1tanh~sint !20.2tanh~cost !

20.2 tanhS sint2cost

2 D20.4 tanhS sint1cost

2 D ,

I 2~ t !5cost2sint20.2 tanh~sint !20.1 tanh~cost !

20.3 tanhS sint2cost

2 D20.2 tanhS sint1cost

2 D .

Then, condition~A1! in Theorem 2 can be reduced to

~0.1a10.6!d1.0.5d2 , ~0.2a10.5!d2.0.6d1 .

In fact, we can takea52,d152,d253. Thus by Theorem 2
there exists exactly one 2p-periodic solution of system~9!
and all other solutions of~9! converge exponentially to it a
t→`. It is easy to verify that (sint,cost) is the 2p-periodic
solution of model~9!. Moreover, the exponential converge
rate is greater than 0.0076.

V. CONCLUSION

Some sufficient conditions for global exponential stabil
for a kind of neural networks with continuously distribute
delays have been obtained. Since the conditions of Theor
1 and 2 include some adjustable parameters, the results
a wider adaptive range. Especially, the conditions of Cor
laries 1 and 2 are easily verified. Therefore, our results p
an important role in the design of globally exponentia
stable neural circuits and periodic oscillatory neural circu
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