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Exponential stability and periodic solutions of neural networks
with continuously distributed delays

Shangjiang Gub and Lihong Huang
College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, People’s Republic of China
(Received 28 June 2002; revised manuscript received 19 September 2002; published 8 Jangary 2003

In this paper we study a class of neural networks with continuously distributed delays. By means the of
Lyapunov functional method, we obtain some sufficient conditions ensuring the existence, uniqueness, and
global exponential stability of the equilibrium and periodic solution. We also estimate the exponentially
convergent rate. Our results are less restrictive than previously known criteria and can be applied to neural
networks with a broad range of activation functions assuming neither differentiability nor strict monotonicity.
Moreover, these conclusions are presented in terms of system parameters and can be easily verified. Therefore,
our results play an important role in the design of globally exponentially stable neural circuits and periodic
oscillatory neural circuits.
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I. INTRODUCTION delay. This is because the distributed delay becomes a dis-
crete delay when the delay kernel i$dunction at a certain
It is well known that for neural networks with delays, it is time.
rather difficult to analyze their stability properties due to In this paper, we investigate a class of neural networks
introduction of delays. There are usually two ways to do thiswith continuously distributed delays modeled by the follow-
One is to linearize the system near equilibrigine original  ing system of delayed differential equations:

system has the same stability properties as the linearized sys- n
tem near equmbngm conditions obtqlpeq in this way con- X! (t)=— mixi () + >, ai; (% (1) + by,
cern the local stability around an equilibrium. Another way is =1

to construct a suitable Lyapunov function for the system and

then to derive sufficient conditions ensuring stability, this xg fwkj(s)xj(t—s)ds Ot
usually involves global stability. Of course, constructing a 0
suitable Lyapunov function is usually not an easy task. Mar- i1 n B

cus and Westerveltl] studied the stability of analog neural

networks with delay by linearizing the systems. By using theyheren corresponds to the number of neurons in the neural

Lyapunov functional approach, Gopalsamy and [Beand  network,x;(t) andl;(t) represent the activation and external

Lu [3] established some sufficient conditions for the de|ay-input5 of theith neuron, respectively;; andb; represent

independent stability; Cao and co-workiet,5] researched the strengths of synaptical connections and are constants,

the global exponential stability. In addition, in the applica- u;>0 represents the rate with which thith neuron will reset

tions of neural networks, it is required that the convergenits potential to the resting state in isolation when discon-

rate should be improved in order to reduce the span thatected from the network and external inpksdenotes the

neurons need to calculate. refractoriness of thgth neuron after it has fired or re-
Although the use of constant discrete delays in modelspondedf;,g;(j=1,2, ... n) are signal transmission func-

with delayed feedbacks provides a good approximation tdions of thejth neuron.

simple circuits consisting of a small number of neurons, neu- In the following we assume thég;,l;:[ty,*)—R are

ral networks usually have a spatial extent due to the presen@@ntinuousk; is integrable and satisfies

of a multitude of parallel pathways with a variety of axon . .

sizgs and lengths. Th_us, there will b_e a distribution _of propa- J kj(s)ds=c¢;>0, f sk(s)ds<w, j=1,2,...n,

gation delays. In this case, the signal propagation is no Jo 0

longer instantaneous and cannot be modeled with discrete . _ )

time delay. A more appropriate way is to incorporate distrib-tN€ Signal transmission functiorfs,g;(j=1,2, ... n) pos-

uted delays. Tank and Hopfie[6] have proposed a neural S€SS the following properties:

circuit with distributed delays, which solves a general prob- (H f;,9;(j=1,2;--,n) are bounded o,

lem of recognizing patterns in a time-dependent signal. For (H2) there existsp;>0 and ;>0 such that|f;(u)

the applications of neural networks with distributed delays as™ fi(w)l= pi|_U_U| and |gi(x) —gi(y)|<ailx—y| for any

described delays as described in R@], the readers may UveRandj=12,...n. _ _

also refer to Refs[7,8]. Moreover, a neural network model  The initial conditions associated with syste) are of

with distributed delay is more general than that with discretghe form

Xi(s)=¢i(s), se(—=,0], 2

*Corresponding author. Email address: shangjguo@etang.com where ¢; :(—«,0]— R is usually assumed to be continuous.
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Our results impose milder constraints on systdmand  the following conditiongA1)—(A6) holds, then the equilib-
apply to neural networks with a broad range of signal transfium x* of system(3) is globally exponentially stable and
mission functions assuming neither differentiability nor stricthence unique.
monotonicity.

(A1) max

1 n
— a—21)(|a;i|p:+|bii|gic;
Il. STABILITY ANALYSIS ]_sisn[ ap; 121 ( )(lalpy +[bijlajc;)

<

(a—1)(|aylp;+c))

<1

Consider the special case of modg)] asl;(t)=I;, i.e.,

1

+ E(|aji|djpi+|bji|dJQiCi)
I

a|]fl(XJ(t))+b|]

X[ (t)= —Mixi<t>+;l

(A2) [ - i
maxy ——
Xg; f k()% (t—s)ds| | +1;, 3 t=i=nl SHII=L

0

1
) ) + — d:p:+1b::1%d.a%c:
wheret=ty, i=1,2,...n, andl; is constant. d; (lagi[d;pi+[bz] “djaie:)

Lemma 1Assume that the signal transmission functions

f;,0;(i=1.2, ... n) satisfy (H1) and (H2). Then there ex- 1 A,
ists an equilibrium for mode(3). (A3) max o 2’1 (a—1)(|aj|pj+ [yl c))
Proof. Clearly, x* = (x1 ,x3, ... X3)" is an equilibrium L=i=n{ TF

of Eq. (3) if and only if x* satisfies that

<1

(a—1)(|ayj|pj+ajc))

<1

n . +dii(|aji|djpi+|bji|djqiaci)
Mixr:jgl a'JfJ(Xr)—'—b'ng(Jo k](S)erS . )
g (A4)1r2i1)fw[a_ﬂi jgl
:jzl [aijfj(X}k)-i-bijgj(CjX}*)]—i-Ii.

+1i

1
+ —(|aji|d;p; + |b;; | “diq;c;
Construct a mapping to be di(| “| P 153 jici)

F(ul!u2! e !un):(Fl(ul)lFZ(UZ)! S !Fn(un))Ta 1 " Ha—1
(A5) max am Zl (a—1)(|ajj|pj+|bjj|qf (@=Be;)
where  Fi(u)=pi M L&y fi(u;) +bygi(ciup) 1+ 1), R
=1,2,...n. Thenitis easy to see that is the equilibrium 1
of system(3) if and only if x* is the fixed point ofF(u). + —(lai|d;p; +|bji|djc) ]<1;
Consider the following closed convex set: di
n n
1 1 1 al(a—1)
Q={xeR"|x—u |<pu > [aijfj++bij9j+]. (A6)lm_ax a_,ui,zl (a—1)(|ayj|pj+qj cj)
=1 <i<n =
. 1 a
i=1,2,...n¢, +E(|aji|djpi+|bji| djc) | <L
I
where f:=sup_g{|f;(s)|} and g} :=sup_g{|g;(s)[}. It is Proof. Sincex* is an iqu_ilibrium of systen@), then the
easy to verify thatF is continuous and satisfies tha(u)  deviationsy;(t)=x(t)—x*, i=1,2,... n satisfy
e () for all ue Q. Hence by the Brouwer’s theoref has at n
least one fixed poink*. This completes the proof. )= — iy (D) 4+ D a [ (X +vi(t)) = f:(x*
The above lemma indicates the existence of the equilib- Yi(®==piyit) j§=:1 L0+ (0) = 15067)]

rium x* of system(3), but is not sufficient to guarantee its n
uniqueness. Our purpose in this section is to obtain some +S b--[g-
sufficient conditions ensuring the uniqueness and even the =
global exponential stability of equilibrium*. It is an easy
exercise to verify the following lemma.

Lemma 2.ayx® '<y®+ (a—1)x* for all a>1x,y=0.

Thus, we state one of main results as follows:

Theorem 1Assume that the signal transmission functions  Obviously, system4) has an equilibrium 0. Hence, to
f;,0;(j=1,2,...n) satisfy (H1) and (H2). If there exist prove the global exponential stability of mod@), it is
positive constantd,,d,, ..., d, andae>1 such that one of equivalent to prove the global exponential stability of Eq.

f:kj(s)(x}‘ +yj(t—s))ds

+15. (4)

—gj(cix})
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(4). In what follows, we distinguish three cases to prove that n
each of the condition§A1)—(A6) ensures the global expo- Z()=(\—upz()+e> a;[f; +z(He ™)
nential stability of Eq.(4). =1
Case 1.Assume that conditiofAl) holds. Then there n w
exists a positive constant< u; such that —fj(X,*)HeM]Zl bij[gj( JO kj(s)[X]

+zj(t—s)e”(s‘t)]ds>—gj(cjx}*) +1;. (5)

We consider a Lyapunov function®l} (t) =V4(2)(t) defined
by

|aij|pj+|bij|quo ki(s)e*ds

n
,ui—)\>(a—1)a_12
=1

n n
|aii|djpi+|bji|djqij0 ki(s)e*sds|. Vl(t):aflz;l di{|2i(t)|“+;l |bjj|q;

+(ad) 1Y
i=1

“ [ X AS| . a
on Jtisk,(s)e 1Z;(&)] dfds]

Foralli=1,2,...n, substitutingz;(t)=y;(t)e"'if t=0 and  Calculating the upper right derivati*V, of V, along the
z;i(t) =y;(t) otherwise into Eq(4), we have solutions of systent5), we have

DJer('[):iZl di|2i(t)|ailD+|Zi(t)|+017121 digl |bijlq; J’:ki(s)e}\suzj(t”a_|Zj(t_5)|a]d5

=2, d| = m)lzml+ 2, aylplzml Hz o]+ 2, |bi,-lqj|zi<t>|“—1f:ki(s>|zj<t—s>|

n
xeMsds+a 1Y) |bij|ij ki(s)eM |z ()|~ |z;(t—s)|*]ds
=1 0

(N— )|z (D)]*+ a‘lgl |aij|pj[(a_1)|zi(t)|a+|Zj(t)|a]+a_lj21 |bjj |

n
SE di
i=1

><J:ki(s)[(a—l)|zi(t)|“+|zj(t—s)|“]e"5ds+a‘1j21 Ibi,-lqjf:ki(S)e“s[lzj(t)l"—IZ,-(t—S)I“]ds

n

n n
$i21 di{)\_ﬂi+al(a_l)j21 |aij|pj+|bij|quo ki(s)e**ds +(adi)7lj§1 |aji|pid; + |bji| aid;
xf ki(s)e°ds ]|zi(t)|“s0.
0

That is, we have
V,(1)=<V,(0).

Therefore, we obtain

n n n - 0
S dlzl=3, di[lzi<0>|a+2 oyla | | ki<s>e“|zj<§>|“d§ds}
i=1 i=1 =1 0 J-s

Al

3, a1+ byla [ kisseas|sulz o))
i=1 =1 0 £<0

Thus,
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|yi<t>|s[dili21 d;

n
1+E |b”|q1f ki(S)Sé\st
=1 0

la
J sud] ¢i(€) —x*[}e™

¢<0

for all t=0 andi=1,2, ... n. This implies that the equilib- n n
rium x* is globally exponentially stable. Moreover, the ex- Vyt)=a 1> di{|zi(t)|“+2 |bj;|“q;
ponential convergent rate ks =

Case 2 Assume that conditiofA2) holds. Then there
exists a positive constant<u; such that

“ X AS| . a
N NCICE e dde}

n
pi—A>(a—1a 1Y
=1

|ai<|p-+fwk-(s)e*5ds> ” -
e Vs(t):a*lizl o] |Zi(t)|a+§l|bij|

+(adi)7lz
j=1

a;i|d;p;+|b;|%d; g (*~ ) = [t

| ]|| jpl | ]I| Jql XJ' f ki(s)e“|zj(§)|“d§ds,
0 Jt-s

xJ ki(s)e*°ds|.
0

n n
V6(t)=afli21 di[lzi(t>|“+j21 |bj; |
Consider the transformed systef) and a Lyapunov func-
tional V,(t) =V,(2)(t) defined by

z (! X AS| . @
Xfo fHk.(s)e 12;(&) dgdsy
Vz(t)=a_1izl di{|zi(t)|a+j21 |byj|“qj”

Using arguments similar to case 1, we, respectively, have

o (t 1/
X ki(s)er%|z;(&)|*déds|.
Jo J,_ e moraz } |yi<t>|<[ 12 d 1+2 bylay | ksrseas ]
. N X (&) —y*|la— At
We calculate the upper right derivati®@"V, of V, along ?gg'g"'(f) x*|re ™,
the solutions of systertb). Using arguments similar to case
1, we have

n n la
|yi(t)|<[di_li21 di 1+j21 Ibijl"quO ki(S)Se'\stH

. < -1 :
|y.<r>|\{d. 2 d, xsupl|g:(6)~x*[Je ™,

n
1+j21 |by;|“qff

§<0
1o
XJ ki(s)s€'*ds| | suf|gi(&)—x*[le™™
0 £<0 n n o 1
yiol=jdi2, df 1+ 2 lbu-lf0 ki(s)se'ds
for all t=0 andi=1,2, ... n. This implies that the equilib- Bk [la Mt
rium x* is globally exponentially stable. Moreover, the ex- Xj;‘(f“‘"'(f) x*[ye™,
ponential convergent rate ;s

Case 3 Assume that one of conditiorf$.3)—(A6) holds.
Consider the associated Lyapunov functions defined by

lyi(t) [ 12 d;
Vi) =a '3, di{|zi<t>|a+§1 Ibyla X supf]ei() —x*[fe

<0

1+2 |b,,|af ki(s)se*sds

] 1

% J“ft K (9)6"]2,(8)|“deds|, for all t=0 andi=1,2, ... n. This implies that the equilib-
0 Jt-s rium x* is globally exponentially stable.
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Corollary 1. Assume that(H1) and (H2) hold. If there  wheret=t,, i=1,2,...n andl;:R*—R is a continuously

exist positive constantd,,d,, ... ,d, such that one of the periodic function with periodo, i.e., l;(t+ o) =1;(t).
following conditions(i)—(viii) holds, then systerfB) is glo- Theorem 2Assume thatH1) and(H2) hold. If there exist
bally exponentially stable: positive constantd,,d,, ... ,d, ande>1 such that one of

conditions (A1)—(A6) holds, then there exists exactly one
w-periodic solution of systen®) and all other solutions of
(6) converge exponentially to it ds—oo.
Proof. Let C=C((—=,0],R") be the Banach space of
+d; Ybji|djaici) forall i=1.2,...p; continuous functions that map-(=,0] into R with the to-
. ﬁ)ohogy of u|niforrT conver|genc|e. For arap/e| C, v|ve define
. _ ¢l =sup<o|¢(6)|, where|p(0)|=max<i<n¢i(6)|.
(i) pi>d; 1121 (laji|d;p; +[bji|djaici) For anye, e C, we denote the solutions of E(6) with
the initial values (Qp) and (0y) as

n

(i) 2Mi>j21 (Jaij|p;+ by a;c;+d Hayi|d;p;

forall 1=12,...m; X(t,¢) = (Xa(t, @) Xa(t, @), - . . Xn(ts@))T,

n

(i) pi=>2, (|alpj+[bylajc)) forall i=1.2,...p; X(4) = Cat) Xt ), Xl 4))
e

respectively. For a givese[0,0) and a continuous function
X:[—0,0)—=R", we define xg:[—,0]—=R" by x((6)
(lV) 2,LL|>E (|a”|pJ+CJ+dfl|al,|de, :X(S+ 0) for 66[_00,0]

=1 Thus, it follows from Eq.(6) that

n

“Up. 12d.a?c. - .
i IbylTdigre) forall =12, [X(t@) =X (6] = — sl Xi(ts @) — X, (.49 ]

n n

(V) 2> 2, (Jaylpy + [byle;+ o *ayldip + 2 ayL04(L @)= X (Ly))]
= =1
+d; Yb;|d;g%c) forall i=1,2,...p;

n

n
+]Zl bij[gj< fo ki(s)xj(t—s,¢)ds
(vi) 2/14>j21 (laij|p;+ajc;+d; *a|d;p;

—gj( fmkj(s)xj(t—s,go)ds

+d; by |2djgic)) forall i=1,2,...p; 0
n for all t=ty, i=1,2,...n.
(Vi) 2Mi>j§1 (Jayj|p; + Ibyj | a%c; +d; *ay|d;p, Define

yi(t):Xi(t,(P)_Xi(t,'T//), i:1121 LN

+d; *bjildc;) forall i=1,2,...p;
One can derive that

n

(viii) 2> (Jay;|p;+afe;+d; ajd;p; .

= o YHO=pyi(0+ 2 | &y f 00

+d; *b;i|?djc;) forall i=1,2,...n.
Proof. First, condition (i) is a special case ofAl) as « +bijgj/(5i(t))Jo ki(s)yj(t—s)ds @)
=2. Next, if condition(ii) or (iii) holds, then there exists a
numbera>1 such that(Al) holds. Finally, the remaining for all t=t,, i=1,2,...n, where 0;(t) lies between
conditions can be verified similarly. xi(t,e) and x;(t,¥), &(t) lies between [5k;(s)x;(t

—s,¢)ds and [gk;(s)xj(t—s,)ds. Using similar argu-
lll. EXISTENCE OF PERIODIC SOLUTIONS ments as that in the proof of Theorem 1, we can deduce that
In this section we investigate the periodic solutions of the 1S the global exponential stable equilibrium of systéfp
model of the form 1.e.,

n

lyi(t)|<sKe ™ Mle—y, i=1,2,...n,
Xi’(t)Z—MiXi(t)‘*‘JZl

ay; f;(x; (1)) +bj;

whereK>1 is a constant and>0 is determined by condi-
tion (H3). Therefore,

X g f:kj(s)xj(t—s)ds i, ©®

Ixi(t,0)—xi(t,)|<Ke Mlo—y], i=1,2,...n.
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Finally, the rest of the proof is similar to that of Theorem
4 in Ref.[9] and is hence omitted here.

Corollary 2. Under the assumptions of Corollary 1, there
exists exactly onev-periodic solution of systeni6) and all

other solutions of Eq(6) converge exponentially to it as
—®,

IV. EXAMPLES
Example 1 Consider the following neural networks:

X1 (t)=—0.6%,(t) +0.1f (x4 (1)) + 0.2f (X»(1))
)

+0.2f( f e‘sxz(t—s)ds> -1.1,
0

+0.1f( e‘sxl(t—s)ds)

®)

X4(1) = — 0.7%,(t) + 0.1f (x4 (1)) + 0.1 (Xx(1))
J
J

+ O.Zf( e Xy (t— s)ds)

+0.2f

esz(t—s)ds> —1.4,

PHYSICAL REVIEW E67, 011902 (2003

X5(1) = —X(t) +0.2f (x1(t))+0.1f (x(1))
)
)

I,(t)=cost+sint—0.1ltankisint) — 0.2tanticost)

|-oamd

I,(t)=cost—sint—0.2 tankisint) — 0.1 tankicost)

|-ozunfEtees)

Then, condition(Al) in Theorem 2 can be reduced to

+ 0.3f( e‘sxl(t—s)ds>

+ O.Zf( e Xy(t—s)ds| +1,(t),

wheref(x) =tanhf),

sint—cost
2

sint+ cost

—0.2tanP6 >

sint— cost
2

sint+ cost

—0.3tanP6 5

(0.1¢+0.6)d;>0.5d,, (0.2«¢+0.5d,>0.6d;.

In fact, we can takexr=2,d,=2,d,=3. Thus by Theorem 2

where the signal transmission function is described by dhere exists exactly ones2periodic solution of systen®)

piecewise-linear functiof(x) = 3 (|x+ 1| —|x—1|), the con-
tinuous delay kernek;(s)=e™°. It is easy to see that
clearly satisfies the hypothesékll) and (H2) above, p;
=q;=1(i=1,2), andk;(s) satisfies thatfje °ds=1>0
and [{se Sds=1<. Hence, the conditioitAl) in Theo-
rem 1 can be reduced to

(0.1 +0.3)d,>0.4d,, 0.4d,>0.3d,.

In fact, we can takex=2,d,=d,=1. Thus by Theorem 1

the equilibrium of mode(8) is globally exponentially stable.

It is easy to verify that1,1) is an equilibrium of the model,

and the exponential convergent rate is greater than 0.0353
Example 2.Consider the following neural networks with

delays.

X1 (t)=—X1(t) +0.2f (x1(t)) +0.2f (x5(1))

©

)
-

+ O.Zf( e Xy (t— s)ds)

+O.4f( e Xy(t—s)ds| +14(t), (9

and all other solutions of9) converge exponentially to it as
t—oo. It is easy to verify that (sihcost) is the 27-periodic
solution of model9). Moreover, the exponential convergent
rate is greater than 0.0076.

V. CONCLUSION

Some sufficient conditions for global exponential stability
for a kind of neural networks with continuously distributed
delays have been obtained. Since the conditions of Theorems
1 and 2 include some adjustable parameters, the results have
a wider adaptive range. Especially, the conditions of Corol-
laries 1 and 2 are easily verified. Therefore, our results play
an important role in the design of globally exponentially
stable neural circuits and periodic oscillatory neural circuits.
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